Corpo local

Em matemática, um corpo local é um tipo especial de corpo que é corpo topológico localmente compacto em relação a uma topologia não discreta.[1] Ou, um campo K é chamado de campo local (não arquimediano) se for completo com respeito a uma topologia induzida por uma valoração discreta v e se o seu corpo residual k for finito.[2] Às vezes, os números reais R e os números complexos C (com suas topologias padrão) também são definidos como campos locais; esta é a convenção que adotaremos a seguir. Dado um campo local, a valoração definida nele pode ser de dois tipos, cada um correspondendo a um dos dois tipos básicos de campos locais: aqueles em que a valoração é arquimediana e aqueles em que não é. No primeiro caso, o campo local é chamado de campo local arquimediano, no segundo caso, é chamado de campo local não arquimediano. Campos locais surgem naturalmente na teoria dos números como complexões de campos globais.

Enquanto campos locais arquimedianos são bastante conhecidos na matemática há pelo menos 250 anos, os primeiros exemplos de campos locais não arquimedianos, os campos dos números p-ádicos para um número primo positivo p, foram introduzidos por Kurt Hensel no final do século XIX.

Todo campo local é isomorfo (como campo topológico) a um dos seguintes:

Em particular, de importância na teoria dos números, classes de campos locais aparecem como as compleções dos campos numéricos algébricos com respeito à sua valoração discreta correspondente a um dos seus ideais máximos. Artigos de pesquisa em teoria moderna dos números frequentemente consideram uma noção mais geral, exigindo apenas que o corpo residual seja perfeito de característica positiva, não necessariamente finito.[3] Este artigo usa a definição anterior.

  1. Weil, André (1995), Basic number theory, Classics in Mathematics, Berlin, Heidelberg: Springer-Verlag, ISBN 3-450-58655-5
  2. Cassels & Fröhlich 1967, p. 129, Ch. VI, Intro..
  3. Fesenko & Vostokov 2002, Def. 1.4.6.

Developed by StudentB